Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large scientific institutions, such as the Space Telescope Science Institute, track the usage of their facilities to understand the needs of the research community. Astrophysicists incorporate facility usage data into their scientific publications, embedding this information in plain text. Traditional automatic search queries prove unreliable for accurate tracking due to the misidentification of facility names in plain text. As automatic search queries fail, researchers are required to manually classify publications for facility usage, which consumes valuable research time. In this work, we introduce a machine learning classification framework for the automatic identification of facility usage of observation sections in astrophysics publications. Our framework identifies sentences containing telescope mission keywords (e.g., Kepler and TESS) in each publication. Subsequently, the identified sentences are transformed using term frequency–inverse document frequency and classified with a support vector machine. The classification framework leverages the context surrounding the identified telescope mission keywords to provide relevant information to the classifier. The framework successfully classifies the usage of MAST-hosted missions with a 92.9% accuracy. Furthermore, our framework demonstrates robustness when compared to other approaches, considering common metrics and computational complexity. The framework’s interpretability makes it adaptable for use across observatories and other scientific facilities worldwide.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Canonical morphological segmentation is the process of analyzing words into the standard (aka underlying) forms of their constituent morphemes.This is a core task in endangered language documentation, and NLP systems have the potential to dramatically speed up this process. In typical language documentation settings, training data for canonical morpheme segmentation is scarce, making it difficult to train high quality models. However, translation data is often much more abundant, and, in this work, we present a method that attempts to leverage translation data in the canonical segmentation task. We propose a character-level sequence-to-sequence model that incorporates representations of translations obtained from pretrained high-resource monolingual language models as an additional signal. Our model outperforms the baseline in a super-low resource setting but yields mixed results on training splits with more data. Additionally, we find that we can achieve strong performance even without needing difficult-to-obtain word level alignments. While further work is needed to make translations useful in higher-resource settings, our model shows promise in severely resource-constrained settings.more » « less
An official website of the United States government

Full Text Available